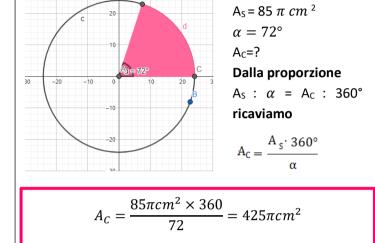

AREA DEL SETTORE E DELLA CORONA CIRCOLARE: ESERCIZI SVOLTI


1

Calcola l'area di un cerchio sapendo che un suo settore ampio 72° ha l'area di 85π cm². [425 π cm²]

L'ampiezza di un settore è 120° e la sua area è 27π cm². Calcola l'area del cerchio cui il settore appartiene. [81 π cm²]

 $A_C = \frac{27\pi cm^2 \times 360}{120} = 81\pi cm^2$

DATI

Un settore circolare è ampio 8° 24′ e la sua area è 25,41 π cm². Calcola la misura del raggio del cerchio cui esso appartiene.

[33 cm

L'ampiezza di un settore circolare è 15° 36' e la sua area è $9,75\pi$ cm². Calcola la lunghezza della circonferenza cui appartiene il settore. [30π cm]

3

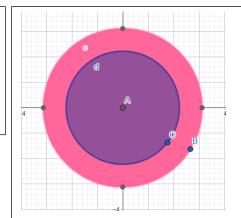
DATI

 $A_S = 25,41 \pi cm^2$

 $\alpha=8^{\circ}~24'$

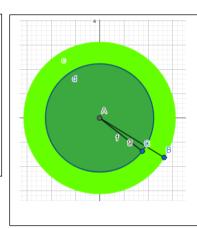
rc=?

Dalla proporzione


 $A_S: \alpha = A_C: 360^{\circ}$

Ricaviamo l'area della circonferenza

$$A_{\rm C} = \frac{A_{\rm S} \cdot 360^{\rm c}}{\alpha}$$

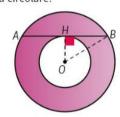

$$A_{C=} \frac{25,41\pi cm^2 \times 360}{8^{\circ} 24'} = 81\pi cm^2$$

Calcola l'area di una corona circolare, sapendo che l'area del cerchio maggiore è 2025π m² e l'area del cerchio minore è 576π m². [1449 π m²]

 A_{C1} = 2025 π m^2 A_{C2} = 576 π m^2 A_{corona} = 2025 π - 576 π = 1449 π m^2

Calcola l'area della corona circolare delimitata da due circonferenze concentriche aventi i raggi di 18 cm e 12 cm. [180π cm²]

 $r_1 = 18cm$ $r_2 = 12cm$


A_{corona} =?

 $A_{C1} = \pi r^2 = 18^2 \pi = 324 \pi$

 $A_{C2} = \pi r^2 = 12^2 \pi = 144 \pi$

 $A_{corona} = 324 \pi - 144 \pi = 180 \pi cm^2$

La corda AB, tangente alla circonferenza minore di una corona circolare, misura 32 cm e OH è lungo 12 cm. Calcola l'area della corona circolare.

DATI

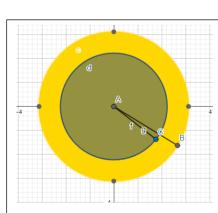
AB = 32 cm

OH = 12 cm OH corrisponde al raggio della circonferenza piccola

 $A_{corona} = ?$

Troviamo OB che è il raggio della circonferenza grande utilizzando il Teorema di Pitagora.

OB = $\sqrt{HB^2-0H^2}$ = $\sqrt{16^2-12^2}$ = $\sqrt{400}$ = 20 cm (raggio della circonferenza più grande)


$$A_{C1} = \pi r^2 = 20^2 \pi = 400 \pi$$

$$A_{C2} = \pi r^2 = 12^2 \pi = 144 \pi$$

 $A_{corona} = 400 \ \pi - 144 \ \pi = 256 \ \pi \ cm^2$

Calcola l'area di una corona circolare, sapendo che la somma dei raggi delle circonferenze concentriche che la delimitano misura 30 cm e che il loro rapporto è 1/4.

 $[540 \pi \text{ cm}^2]$

 $r_1 + r_2 = 30 \text{ cm}$

$$\frac{r1}{r2} = \frac{1}{4}$$

Applico la proprietà del comporre:

$$(r_1 + r_2) : r = (1+4) : 1$$

$$r_1 = \frac{30}{5} = 6$$

 $r_2 = 6 X 4 = 24$ (perché è 4 volte più grande)

$$A_{C1} = \pi r^2 = 6^2 \pi = 36 \pi$$

$$A_{C2} = \pi r^2 = 24^2 \pi = 576 \pi$$

 $A_{corona} = 576 \pi - 36 \pi = 540 \pi cm^2$